
The world runs on code. We secure it.

A Guide to Modern API Security

eBook

EXPERT
PARTNER

E-BOOK | A GUIDE TO MODERN API SECURITY | 2

Introduction
APIs are like highways: They’re everywhere,
and although they provide the foundation for
interaction between all manner of resources,
they also pose challenges.

With APIs, those challenges include, first and
foremost, security risks. The more APIs you use,
and the more complex your API architectures,
the harder you’ll need to work to ensure that
security issues with APIs don’t undercut the
value that APIs bring to your applications
and infrastructure. Issues such as weak API
authentication, injection attacks against API
endpoints, API sprawl and more can turn APIs
into the weakest link in your security strategy, if
you don’t address these risks effectively.

That’s why we’ve prepared this e-Book: To help
organizations understand the new types of
security risks that arise from APIs, as well as
how to handle them. Without going too far into

the weeds, the following sections provide a
technical walkthrough of how APIs work, which
security challenges they create, and which
best practices developers can follow to contain
those risks.

If you use APIs today – which you very likely do
if you are leveraging cloud-native technology
in any way – mastering the concepts discussed
in the following pages is crucial for ensuring
that you can balance the benefits of APIs with
security challenges. Indeed, avoiding APIs is
simply not realistic for most development teams
today, given how central APIs have become
to application architectures and cloud-native
deployment environments. This e-Book helps
developers stop living in fear of API security
issues so that they can take full advantage of
APIs, while simultaneously creating applications
that are as secure as possible.

E-BOOK | A GUIDE TO MODERN API SECURITY | 3

Table of Contents

The Basics of API Sprawl and API Security Risks ..4

 > Why Are APIs So Popular? ..4

 > The Risk of API Sprawl ..5

 > Sprawl for Internal vs. External APIs ...5

 > Managing Security in the Age of API Sprawl ..5

 > Section Summary ..6

Managing Your API Attack Surface .. 7

 > How Do Documentation Tools Like Swagger Fall Short? 7

 > Why It’s Hard to Keep Track Of APIs ...8

 > How Microservices Architectures Lead to API Communication Flows8

 > Not Knowing All Your APIs Leads to Catastrophe ..8

 > Section Summary ..9

Understanding the Top API Security Risks ... 10

 > Why API Security Matters .. 10

 > Major API Security Risks According to OWASP ... 10

 > Beyond OWASP: Additional API Security Best Practices 11

 > Require Access Control .. 11

 > Avoid API Sprawl ... 11

 > Section Summary ... 11

Addressing API Security Challenges ... 12

 > Reasons Why APIs Are Hard to Test and Secure .. 12

 > Tools and Approaches That Work Well Together – and Some That Don’t 12

 > How to Effectively Scan APIs ... 13

 > Ways to Address the Continuous Development of APIs and
Ever-Changing Contracts ... 14

 > Section Summary .. 14

Conclusion ... 15

E-BOOK | A GUIDE TO MODERN API SECURITY | 4

The Basics of API Sprawl and API
Security Risks
To understand why API security is so critical for
modern developers, you must first understand
how central APIs have become to modern
development; and why widespread use of APIs
has led to a phenomenon called API sprawl.

APIs have been around for decades, and
so have API security challenges. What has
changed over the past seven or eight years,
however, is that usage of APIs has surged.

If you had to find an analogy for this explosive
growth of APIs, you might choose to compare
them to cell phones. Like cell phones, APIs were
once considered a niche technology for use
in specific, limited circumstances. And now,
they’re everywhere. Just as the total number
of cell phones in the world increased from

a couple of million circa 1990 to around 2.5
billion today, the total APIs in existence has
grown from a few dozen in the early 2000s,
approaching 1.7 billion active APIs by 2030.

In most respects, the proliferation of APIs
is a great thing. But, like the proliferation of
smartphones, it also presents a major challenge
in one key aspect: Security. More APIs means
more opportunities for attackers to exploit
API security vulnerabilities – especially if
organizations fail to keep track of which APIs
they are using.

Let’s explore this phenomenon, which is
sometimes known as API sprawl, and what it
means for modern security strategies.

The fact that there are so many APIs in existence
today is not an inherently bad thing. On the
contrary, APIs provide a number of key benefits
to developers and users, such as:

 Љ Integrations: APIs make it easy to share
data between applications and services.

 Љ Distributed environments: Because APIs
serve as the glue that binds together
discrete microservices, cloud services,
and so on, they play a vital role in allowing
developers to take full advantage of
modern, distributed infrastructure. By
extension, they help enable resilient and
scalable environments.

 Љ Lower development effort: In some cases,
APIs allow developers to incorporate
functionality into software by borrowing it

from third-party services instead of having
to write it themselves.

 Љ Simplified user experience: APIs can drive
better user exp eriences by allowing users
to share data with multiple applications
seamlessly, for example, or sign in once to
access multiple applications.

The list could go on, but the point is clear: There
are numerous factors today that encourage
developers to use APIs extensively. That’s why
it has become common today to talk in terms
of “API-first” development and design, which
means APIs lay the foundation for the way
developers design and build software.

Why Are APIs So Popular?

https://www.twinword.com/blog/who-launched-the-first-api-in-history/#:~:text=Which%20company%20was%20the%20first,meant%20to%20be%20publicly%20available.
https://versus.com/en/news/cell-phone-history#:~:text=Cell%20phones%20became%20popular%20during,to%20a%20whopping%202.5%20billion.
https://www.f5.com/pdf/reports/f5-office-of-the-cto-report-continuous-api-sprawl.pdf
https://medium.com/better-practices/api-first-software-development-for-modern-organizations-fdbfba9a66d3

E-BOOK | A GUIDE TO MODERN API SECURITY | 5

Yet, there is one major downside to the surge of
API adoption in recent years: API sprawl.

API sprawl is the use of APIs to such a large
extent that businesses struggle to keep track of
which APIs they are using, and which security
vulnerabilities may linger within those APIs.

To go back to the cell phone analogy, you could
compare API sprawl to what happens when
businesses adopt overly liberal Bring Your Own
Device (BYOD) policies for their employees
by allowing workers to use personal mobile
devices at work. If businesses don’t enforce
strong governance policies regarding exactly
how mobile devices can be connected to their

networks, they may end up with a situation
where they struggle to keep track of which
third-party devices are in use within their
environments, let alone whether those devices
are secure.

API sprawl is similar in the respect that,
if a business uses too many APIs without
systematically tracking where and how they are
used, it becomes very difficult to ensure that
those APIs are used securely.

Analyst firms like Gartner point to API sprawl –
and the security issues it introduces – as a major
issue that businesses will need to address as
they continue to make use of APIs.

The Risk of API Sprawl

It’s worth noting that API sprawl challenges
affect both internal APIs (meaning those that
a company develops in-house to connect its
own microservices or applications) and external
APIs (which are APIs created by third parties to
support integrations with outside resources).

In some senses, external APIs pose a greater
threat with regard to API sprawl because it’s
easier for attackers to discover and abuse
external APIs. But internal APIs, too, can be
exploited by attackers who identify flaws within

them. For instance, an internal API could be
abused in order to escalate a breach from one
application into other applications that integrate
with the breached application using an internal
API.

The point here is that, even if you don’t use
external APIs (or you use them sparsely), it’s
critical to make sure that you know which APIs
you are using and how they are being used, so
that you can react quickly to security issues that
arise with any type of API on which you rely.

Faced with the security challenges that arise
from API sprawl, what’s a business to do?

The answer is clearly not to stop using APIs.
While that would mitigate API-related security
issues, it would deprive businesses of the many
benefits that APIs offer.

A better solution is to use APIs as often as you
like while making sure to manage the security
risks that they introduce. Doing so hinges on a
few key practices:

Sprawl for Internal vs. External APIs

Managing Security in the Age of API Sprawl

https://www.gartner.com/en/documents/4009103

E-BOOK | A GUIDE TO MODERN API SECURITY | 6

 Љ API governance: You should include
rules for APIs within your organization’s
governance policies. The rules should
explain when both internal and external
APIs may be used by your developers,
and which security practices (such as the
OWASP API security recommendations)
need to be followed when using those
APIs. Your governance policies should
also ensure that developers systematically
document which APIs they are using and
where, so that it’s easy to know which
systems are affected by an API security
vulnerability.

 Љ Track API security vulnerabilities: Keep
track of disclosures about API security

issues for any external APIs you use.
(For internal APIs, you’ll need to identify
vulnerabilities yourself, because there are
no disclosures by third parties about APIs
you develop and use yourself.)

 Љ Monitor your APIs: In addition to following
disclosures of API security issues,
continuously monitor APIs to detect usage
anomalies that could signal abuse.

Practices like these help to establish a happy
medium with regard to APIs. They let you take
full advantage of APIs while mitigating the risk of
API sprawl.

Just as there’s no avoiding cell phones today,
not using APIs is simply not an option for
most businesses. That’s why it’s critical to use
governance strategies and security tools to

mitigate the security risks that can arise from
API sprawl. With a little effort, you can benefit
fully from APIs without letting APIs undercut
your business’s security.

Section Summary

https://owasp.org/www-project-api-security/

E-BOOK | A GUIDE TO MODERN API SECURITY | 7

You might think that taming API sprawl and
staying on top of API vulnerabilities shouldn’t
be that hard. Can’t you just document which
APIs you use, then refer to the documentation
to assess your API risks?

In theory, you can. But in practice, managing
API sprawl – and minimizing your API attack
surface, which means minimizing the potential
for your APIs to be exploited – is much easier
said than done. This section explains why, and
offers tips on what developers can do about it.

Managing Your API Attack Surface

Documenting APIs comes with inherent
difficulties. The main problem areas include
ambiguity of exposed functionality, incomplete
or undocumented content, and incorrect
responses. Development teams rely on tools like
Swagger to help them document their APIs and
use automation to mitigate some of those issues.

Swagger is not a panacea, however, and using
Swagger/OpenAPI for API development does not
protect you against all vulnerabilities. Recent
research conducted by Soufian El Yadmani
of Cybersprint found many flaws in this
technology, including many vulnerabilities listed
in the OWASP API Top 10.

For example, issues can happen when a
web framework is integrated with Swagger.
Developers using the FastAPI framework can
receive automatically generated Swagger UI
fields from the code without declaring the API
specification. This works fine on paper, but it
might not work with your particular business
requirements. The CRUD model might return a
different result based on certain circumstances,
for instance, or use a different way of calculating

the end result that deviates from a typical case.
The framework might be unable to introspect
the correct result and rely instead on manual
intervention. In this case, developers will have
to completely own the dependencies and
generated documentation to ensure that they
match the expected outcome.

In addition, Swagger generates complex code
that has little opportunity for customization,
which makes it inconvenient to use. For
example, if hypermedia links are missing from
the response, developers might try to intervene
by writing custom queries that deviate from the
spec, thereby increasing the risk of producing
undocumented responses.

Overall, the hardest part is establishing
proper workflows for working with Swagger
in the optimal way – writing specs in YAML,
implementing the specs, and writing unit
tests that conform with those specs. The API
maintainer’s job is to make sure that they don’t
deviate from the supported features and that
they keep the spec as an authoritative source of
truth.

How Do Documentation Tools Like Swagger Fall Short?

https://www.cybersprint.com/blog/swagger-api-discovery-of-api-data-and-security-flaws
https://www.cybersprint.com/blog/swagger-api-discovery-of-api-data-and-security-flaws
https://fastapi.tiangolo.com/features/#based-on-open-standards

E-BOOK | A GUIDE TO MODERN API SECURITY | 8

There are many reasons why APIs are hard to
keep track of, and therefore hard to support
at scale, but they all relate to technical debt.
Working on many products as part of a broader
ecosystem is a very typical scenario. Some
parts of the system might be unknown due to a
change in business priorities and focus, when
some API services were neglected and forgotten
– until they failed to work. This is an example of
code ownership debt.

Another type of technical debt is people debt.
This happens when you allow developers to

work on critical API systems for a long time and
then they decide to resign from the company.
The domain experience that these people
acquired when building those systems may be
lost to future maintainers unless there is a good
handover process. Having many API services
and no one who understands how they work
significantly contributes to the initial problem.

The issue becomes even bigger when you
introduce architectural debt by implementing
APIs using microservices. Let’s explain.

Why It’s Hard to Keep Track Of APIs

APIs and microservices are directly related. As
you develop applications using microservices,
you create highly decoupled services that
enclose their own domain and communicate
with each other using APIs. For example, a
user microservice needs to communicate with
the auth microservice to authenticate the user
before responding to a request to view that
user’s profile. This communication dictates
the use of an API contract between each
microservice. In addition, API gateways can be
used to aggregate multiple APIs under a single
namespace, which helps maintain observability
and centralized monitoring at a fundamental
level.

More real-world domains may need many
microservices. In practice, that means having a
separate API layer behind each microservice –
and each one has its own attack surface. It’s not
unusual to have hundreds of microservices that
each expose OpenAPI interfaces. This leads to
what is known as API sprawl. In this case, the
sheer number of services makes things harder
to maintain. It’s very common for businesses to
use APIs without tracking when or where they
are used, which makes it harder to keep track of
their security risks.

How Microservices Architectures Lead to API Communication Flows

It is a well-known fact that you cannot secure
something when you don’t know it exists. But
achieving continuous runtime visibility into all
APIs is not trivial. It requires that you understand
the exposed parts of the API in depth and that
you document the obscure sections, run static
code analyzers, and subject the application to
security testing. This is mandatory, since the
failure to record and secure these parts
is very dangerous.

APIs are already extremely susceptible to many
kinds of attacks. Undoubtedly, there is no limit
to what attackers can use when it comes to
stealing sensitive data for malicious purposes.
Here are some examples of attacks that you
may encounter:

Not Knowing All Your APIs Leads to Catastrophe

E-BOOK | A GUIDE TO MODERN API SECURITY | 9

 Љ DDoS: Attackers can target unknown
parts of your APIs to do the maximum
damage. They can overload the system
with terabytes of bandwidth if they’re
successful, and you won’t know what hit
you. It’s therefore important to safeguard
against DDoS attacks on each exposed
part of your APIs.

 Љ Innocuous access: Hidden or
undocumented parts of your API can
be easier to exploit. By using unknown
endpoints, for example, attackers can dig
in quickly and gain unauthorized access
without someone detecting anything
suspicious. Unless the traffic from those
endpoints is more consistent, it will be
harder for the security teams to recognize
the danger.

 Љ Injection: API endpoints that are
vulnerable to injection attacks (SQL,
XSS, and so on) can help attackers
expose sensitive data, leak credentials,
and gain insights into how to attack the
infrastructure. If the API under attack is
unknown or undocumented, you will lose
valuable time trying to figure out how to
safeguard it.

Take extra care when you develop and expose
APIs – especially the ones that are used for
public access. These can be used as target
practice for all sorts of attacks. Conducting
a solid security assessment of your APIs will
position you one step ahead of any future
attacks.

Just because you use Swagger, follow the
best practices for documentation, and lead
by example does not mean that your APIs are
secure by default. It literally takes a village to
achieve a superior level of security – mainly
because of the inherent difficulty of covering the
attack surface of your APIs.

This is why you need to establish an end-to-end
API security strategy, complete with security
testing, extensive discovery of available APIs,
and the use of modern tooling and monitoring
services. With some effort, you will improve the
security posture of your APIs without hurting
their overall performance.

Section Summary

E-BOOK | A GUIDE TO MODERN API SECURITY | 10

Understanding the Top API Security Risks

If you look at some of the most significant
cybersecurity breaches in the past, you’ll notice
that many of them were facilitated by API
security issues. Examples include:

 Љ The T-Mobile breach, in which attackers
exploited an API to scrape customer data.

 Љ LinkedIn’s exposure of 700 million
customers’ data, also due to an insecure
API.

 Љ A vulnerability in a Coinbase API that
allowed attackers to essentially sell
an inexpensive coin for BTC due to
insufficient API data validation.

The whole point here is that even some of the
largest organizations with a significant focus on
software security can fall prey, since API-related
security breaches are becoming widespread
today.

In a way, that’s not surprising. API adoption
has surged in recent years, with developers
now using between 10 and 15 APIs in each
application they build, on average. Given the
proliferation of APIs, it’s pretty understandable
why attackers are increasingly focusing on APIs
as a vector for breaching applications and data.

As the last section explained, no matter how well
you document your APIs, there’s no guarantee
against API security issues. That’s why it’s
essential to understand the specific security
risks that can impact APIs and know how to
respond to them.

Toward that end, this section walks through
different types of API security risks, as identified
by organizations like OWASP.

Why API Security Matters

API security is made more complex by the fact
that there are many ways to exploit APIs. The
OWASP API Security Top 10 list summarizes
the main risks that organizations face related to
APIs. Among the most significant are:

 Љ Broken Object Level Authorization
(BOLA): BOLA leads to improper validation
of requests to APIs, allowing users to do
things like download data that they should
not be able to access.

 Љ Broken User Authentication: Even if
proper object level authorization is in
place, attackers can potentially still gain
unauthorized access to resources via
APIs by defeating the authentication

mechanisms (like tokens) that are
supposed to restrict access.

 Љ Excessive Data Exposure: When you
expose more data than is necessary via an
API, you invite attack. Ideally, APIs should
only expose the data they need to expose
in order to serve their intended purpose.
Your API shouldn’t be an open door to all
of the data inside your environment.

These, at least, are the top three API security
risks according to OWASP. Check out the
complete list for the full scope and depth of
OWASP’s recommendations on API security.

Major API Security Risks According to OWASP

https://threatpost.com/t-mobile-alerts-2-3-million-customers-of-data-breach-tied-to-leaky-api/136896/
https://fortune.com/2021/06/30/linkedin-data-theft-700-million-users-personal-information-cybersecurity/
https://fortune.com/2021/06/30/linkedin-data-theft-700-million-users-personal-information-cybersecurity/
https://wib.com/post/coinbases-api-security-nightmare
https://techcrunch.com/2018/03/13/rapidapi-an-api-marketplace-that-processes-half-a-billion-api-calls-each-month-raises-9m-led-by-a16z/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/

E-BOOK | A GUIDE TO MODERN API SECURITY | 11

The OWASP list is a great foundation for
securing APIs. Arguably, however, API security
strategies should include additional measures,
including requiring access control and avoiding
API sprawl.

Require Access Control
One major type of risk that the OWASP list
doesn’t address (at least not directly) is total
failure to require any kind of authorization or
authentication for APIs. If you create a public
API – meaning an API that can be accessed by
anyone that knows where it is hosted – and don’t
require authentication, you get into situations
where attackers can scrape vast amounts of
data in ways you didn’t intend.

Avoid API Sprawl
We’ve said it before, and we’ll say it again: A
major API security risk is using so many APIs
that you simply can’t keep track of where and
how they’re integrated into your applications.
When you do this, you end up with API sprawl.

API sprawl is bad because it makes it hard to
determine the scope of a known API security
issue. It also makes it difficult to ensure that all
APIs are being used securely.

To avoid API sprawl, establish governance
policies that dictate when and under which
terms developers may use both internal and
external APIs within your organization.

Beyond OWASP: Additional API Security Best Practices

We could go on in discussing major API security
risks. This is a somewhat subjective topic, and
although security recommendations like those
from OWASP provide a great starting point for
API security, it’s critical to think as holistically as
possible about where API security risks lie within

your organization and how to manage them.
Sometimes, the most serious security risks arise
from very simple mistakes – like failing to keep
track of which APIs you are using, or choosing
not to require authentication of any type for API
requests.

Section Summary

E-BOOK | A GUIDE TO MODERN API SECURITY | 12

Addressing API Security Challenges

APIs come in all shapes and sizes. The most
critical parts of an API are often the most
susceptible to attacks on vulnerabilities like
those listed in the OWASP API Security Top 10.
For example, attackers might attempt to abuse
paths for logged in users, exfiltrate sensitive
data by fuzzy testing the endpoints, or force
the site down using DDoS attacks. As the API
surface increases, of course, so does the risk
of exposure. Imagine having to protect APIs
with hundreds of endpoints, each with its own
conventions.

This could happen quite easily when there are
multiple teams working on the same project
and contributing to the same API. The API
might not have a sole owner; instead, it might
be exchanged between multiple stakeholders
(such as project owners, developers, testers,
operations, and network and security teams),
with each group submitting their own piece to
deliver new features to their customers.

Relying too heavily on some parts of the
delivery pipeline to include sufficient security
controls is equally problematic. For example,
you shouldn’t rely on the development team to
constantly provide the most secure software all
the time. Developers do not habitually think like
attackers. They will incorporate basic pragmatic
reasoning and accept logical trade-offs when
delivering sprint goals. However, they will miss
important security considerations fairly often
simply because they are generally unaware of
use and abuse scenarios. Likewise, if you expect
your WAFs to perpetually block all unwanted
traffic and your static code analyzers to always
pinpoint all security flaws in the code, then
you will be in for a big surprise when attackers
exploit unknown vulnerabilities or zero-day bugs.

Therefore, since APIs are hard to test and
secure, you must be innovative in finding
conventional tools, agile methodologies, and
various approaches that work well together. Let’s
explore some of them.

Now that we know all about why API security
risks exist and which forms they take, let’s
talk about solutions. This section discusses
actionable strategies for staying ahead of API

security challenges, as well as minimizing your
risk of experiencing API security vulnerabilities
in the first place.

Reasons Why APIs Are Hard to Test and Secure

Once you have established that you need to use
flexible approaches to keep your APIs secure,
you want to make sure that you are following the
right guidance. There are lots of great guides and
best practices for API security, but it’s important
to differentiate the ones that make the most

sense for your APIs from the ones that don’t.

Some of the approaches that work with API
security are mainly focused on establishing in-
depth defenses:

Tools and Approaches That Work Well Together – and Some That Don’t

E-BOOK | A GUIDE TO MODERN API SECURITY | 13

 Љ Authenticate and authorize by default:
When you are developing APIs, you should
explicitly mark unauthenticated endpoints
(and not the other way around). For
example, you should protect all endpoints
with strong authentication (2-factor) and
assign a default role that cannot read or
modify any data. That way, there is less
risk of exposing new endpoints that do not
have any sort of protections.

 Љ Use API security scanners: Tools and
services in this category include runtime
protection, DAST (vulnerability scanning
tools), static code analyzers, and security
bots. These tools provide a nice layer of
defense against baseline security issues.

 Љ Use penetration testing: You can hire
professionals who think like attackers
and are able to perform sophisticated
tampering. These professionals have
access to unconventional tools and
leverage techniques that help expose
issues that security scanners won’t pick up
by default.

On the other hand, some approaches might
not work in the long run because they possess
inherent risks. For example:

 Љ Security through obscurity: This means
that we try to secure part of the API by

making it harder to use or to discover
its endpoints or behavior. This is like an
Easter egg hunt where you expose certain
parts of the API only to clients that know
where to look for them. Or you might make
it harder for attackers to guess some of
the API schemes by using special query
parameters or headers. Although this
approach might work for certain cases, it
is not considered 100% secure. Cunning
attackers might figure out a way to uncover
those hidden parts of the API or infer
how the API response works, which would
give them the ability to retrieve sensitive
information.

 Љ Using JSON Web Tokens (JWTs) for storing
sensitive data: JWTs offer a good balance
between security and convenience when
working with APIs – as long as you abide
by the rules. If you store sensitive data
in the JWT payload, for example, you are
already compromising security since
JWTs can be decoded easily. Always use
industry-standard JWT libraries, strong
JWT secrets, and short expiration tokens.
In addition, always use HTTPS.

We mentioned before that APIs can be secured
by automating the scanning of application code.
Let’s explore that in more detail.

Start with the source of truth, the source code.
By scanning the source code, you get a complete
view of what APIs are inside of a project. This
also allows developers to easily and quickly fix
any security issue that has been identified by this
static analysis. Since APIs need to be human-
readable, scanning the API Documentation
as Swagger can also be key to identifying
risk—checking key risks like access control,
configurations, and best practices. This is an
example of shift-left security, wherein DevOps
teams ensure that security is built into application
development rather than added on later.

Next, once those APIs are moved to an

environment, it is easy to perform real E2E tests
based on predefined rules against your real API.
If the scanner finds any defects or suspicious
red flags, it will report them to a dashboard for
triaging. These scanners include many checks
(like the OWASP API Security Top 10 and open
CVEs) and can automatically create policies
without intervention.

Even if you have a perfectly valid specification file,
though, it doesn’t mean that the scanners will find
all of the issues. It’s equally important that you
are able to feed the scanner raw HTTP recorded
sessions using either Fiddler or Burp so that it can
verify unknown parts of the API.

How to Effectively Scan APIs

https://checkmarx.com/blog/transforming-security-devops-into-devsecops/

E-BOOK | A GUIDE TO MODERN API SECURITY | 14

At the end of the day, how can you address
the continuous development of APIs and ever-
changing contracts when you have to contend
with multiple attack vectors in real time?

 There are several options to consider:

 Љ Scan early and often: Software is
developed at the speed of light nowadays.
The only way to keep up with the ever-
changing contracts is scanning the API
Documents and Source Code when
they are changed by the development
team. This can alert them immediately to
critical vulnerabilities and risk. Allow the
developer to learn better practices and
secure the APIs well before they are live.

 Љ Create clean environments for security
testing: Sometimes you can’t slow down
the release of new features in the name
of security. It’s important that security
teams create special environments where
they can introduce novel security testing
tools and scanners for advanced security
testing. The primary idea is to conduct

intelligent analytics, pinpoint hidden
attack vectors, and expose vulnerabilities
without affecting the production
environment. Once a security issue has
been found and mitigated in this special
environment, the security team can patch
the production systems using the current
change request system.

 Љ Adopt DevSecOps workflows: DevSecOps
is about integrating your IT security team
into the full lifecycle of your app. Put
simply, this means that security teams
follow short and frequent development
cycles, integrate security tools and
vulnerability scanners with minimal
intervention, ensure that all operational
technologies run with the optimal security
configurations, and promote a security-
first mindset across isolated teams.
This can be accomplished by including
automated security checks throughout
the CI/CD process and creating service
templates that are secure by default for
the development teams to adopt.

Ways to Address the Continuous Development of APIs and
Ever-Changing Contracts

Let us conclude by emphasizing the fact that
there is no way your APIs can be 100% secure
at all times. Instead, organizations should be
constantly vigilant to scan their APIs for risks
and vulnerabilities. As a security professional,
it’s crucial that you stay informed about
the status of the API security ecosystem.

Reading security advisories like the ones from
Checkmarx is a great way to acquire this
knowledge. Their advisories discuss real public
exposures while providing deep root cause
analysis and explaining mitigation tactics. Feel
free to sign up for more tutorials about API
security and DevSecOps.

Section Summary

https://www.devsecops.org/
https://checkmarx.com/blog/checkmarx-research-soundcloud-api-security-advisory/
https://checkmarx.com/blog/checkmarx-research-soundcloud-api-security-advisory/
https://checkmarx.com/blog/

E-BOOK | A GUIDE TO MODERN API SECURITY | 15

About Checkmarx
Checkmarx is constantly pushing the boundaries of Application Security Testing to make security seamless and
simple for the world’s developers while giving CISOs the confidence and control they need. As the AppSec testing
leader, we provide the industry’s most comprehensive solutions, giving development and security teams unparalleled
accuracy, coverage, visibility, and guidance to reduce risk across all components of modern software – including
proprietary code, open source, APIs, and Infrastructure as code. Over 1,675 customers, including 45% of the Fortune
50, trust our security technology, expert research, and global services to securely optimize development at speed
and scale. For more information, visit our website, check out our blog, or follow us on LinkedIn.

© 2022 Checkmarx Ltd. All rights reserved. Checkmarx is a registered trademark of Checkmarx Ltd. All other marks and trade names mentioned
herein belong to their respective owners. Checkmarx reserves the right to modify, transfer, or otherwise revise this publication at its sole
discretion and without notice.

Conclusion
For most developers today, there’s no avoiding
APIs. APIs have become so widespread that
it’s just not practical in most cases to minimize
security risks by choosing not to use APIs.

Nor is it possible to manage your risks simply
by documenting APIs thoroughly or sticking to
certain types of APIs. No matter which APIs you
use, or how you manage information related
to them, problems with authentication, data
leakage and more can lead to serious security
incidents.

The good news is that it is possible to catch
API-related security risks before they turn into
breaches. Start by automatically scanning

your applications to determine which APIs
you are using, which helps prevent API sprawl.
You should also scan your APIs themselves
for known security issues or vulnerabilities.
Adhering to DevSecOps best practices helps,
too, as does designing APIs in ways that
minimize the risk of sensitive data exposure.

When you do these things, you get to enjoy
the many benefits that APIs offer, without the
security headaches they can pose.

https://checkmarx.com/
https://checkmarx.com/blog/
https://www.linkedin.com/company/checkmarx

About Cert2Connect

Expert partner for Checkmarx Application Security in The Netherlands. Founded in 2012 by experienced
professionals in the IT and cyber security industry. Our clients include both large companies and SME
organizations in various market sectors, including banks, financial institutions, telecom, manufacturing,
services, logistics, education, government, software development, providers and others.

Our vision: “Recognize and acknowledge risks. Mitigate them and stay in control with state-of-the-art
cyber and cloud security solutions.”

Cert2Connect has among others a strong focus on application security. Not surprising when you
consider that many, if not most, weaknesses arise in application development. This focus is reflected
in much of our support for companies and organizations. We have a complete portfolio for the security
of applications.

For more info visit our website www.cert2connect.com or contact us via info@cert2connect.com

Checkmarx at a Glance

Customers in 70 countries

Languages & frameworks

Employees in 25 countries of the Fortune 50 are customers

KIKS downloads in 2021

1,675 750 45%

30 500k

The world runs on code. We secure it.

